代表作
1. Y.G.Shi,:A Partial Regularity Result of Harmonic Maps from Manifolds With Bounded measurable Riemannian Metrics 。Commun. Anal. Geom. Vol.4, No.1, 121-128, 1996
2. Y.G.Shi, L.F.Tam & Tom Y.H. Wan: Harmonic maps on hyperboblic spaces with singular boundary value. J. Diff.Geom.51(1999)551-600.
3. Y.G. Shi: On the construction of some harmonic maps from R^m to H^n. Acta Math. Sinica, English Series Vol.17, No.2 (2001)301-304.
4. L.Ni,Y.G.Shi,L.-F.Tam: Poisson equation, Poincare-Lelong equation and curvature deacy on complete Kahler manifolds, J.Diff.Geometry, 57(2001)339-388
5. Y.G.Shi, L.F.Tam:Harmonic maps from Euclidean spaces to hyperboblic spaces with symmetry。Pacific J. Math Vol。202,No.1 2002. 227-256
6. L.Ni,Y.G.Shi,L.F.Tam:Ricci flatness of asymptotically locally Euclidean metrics, Trans. AMS (2002) ,Vol355, No.5, 1933-1959.
7. X.H.Mo, Y.G.Shi: A nonexistence theorem of proper harmonic morphism between hyperbolic spaces, Geom. Dedicata 93,89-94,2002.
8. Y.G.Shi, L.F.Tam:Positive mass theorem and the boundary behaviors of compact manifolds with nonnegative scalar curvature. Journal Differential Geometry 62(2002)79――125。
9. Y.G.Shi, L.F.Tam:Quasi-Spherical Metrics and Applications, Commun. Math. Phys. 250, 65-80 (2004).
10.Y.G. Shi, G.Tian: Rigidity of asymptotically hyperboblic manifolds, Commun.Math.Phys。259,545-559(2005)
11.Y.G.Shi, L.F.Tam:Asymptotically hyperbolic metrics on the unit ball with horizons. Manuscripta Math. Vol.122, No.1, 2007, 97-117
12.X.H.Mo, Y.G.Shi:A non-existence theorem of proper harmonic morphisms from weakly asymptotically hyperbolic manifolds. Tohoku Math J, 58(2006), 359-368.
13.Y.G.Shi, L.F.Tam: Rigidity of compact manifolds and positivity of quasilocal mass, Class.Quantum Grav.24 (2007) 2357-2366.
14.Shi, Yuguang; Tam, Luen-Fai Quasi-local mass and the existence of horizons. Comm. Math. Phys. 274 (2007), no. 2,277–295
15.Li Z.Y. Shi Y.G., Wu P. Asymptotically hyperbolic metric on unit ball with multiple horizons, Proceeding AMS, 4003-4010 Vol.136 No.1, 2008
16.Li Z.Y. Shi Y.G., Maximal slice in ADS spaces, Tohoku Math J, 60(2008), 253-265.
17.Fan, Xu-Qian; Shi, Yuguang; Tam, Luen-Fai Large-sphere and small-sphere limits of the Brown-York mass. Comm. Anal. Geom.17 (2009), no. 1, 37–72
18.Shi, Yuguang; Wang, Guofang; Wu, Jie On the behavior of quasi-local mass at the infinity along nearly round surfaces. Ann. Global Anal. Geom. 36 (2009), no. 4, 419–441
19.P.Z. Miao, Y.G.Shi, L.F.Tam: On Geometric problems related to Brown-York and Liu-Yau quasi-local mass. Commun. Math. Phys. 298, 437--459 (2010).
20.Qing, Jie; Shi, Yuguang; Wu, Jie Normalized Ricci flows and conformally compact Einstein metrics. Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 183–211. 53C25 (58J05)
21.Hu, Xue; Shi, YuGuang Static flow on complete noncompact manifolds I: short-time existence and asymptotic expansions at conformal infinity. Sci. China Math. 55 (2012), no. 9, 1883–1900. 53C25
22.Hu, Xue; Qing, Jie; Shi, Yuguang Regularity and rigidity of asymptotically hyperbolic manifolds. Adv. Math. 230 (2012), no. 4-6, 2332–2363. 53Cxx
23.R. Gicquaud, D.D. Ji and Y.G. Shi: On the asymptotic behavior of Einstein manifolds with an integral bound on the Weyl curvature, Communications in Analysis and Geometry. Vol.21, No.5, 1-33, 2013
24.Bao, Chao; Shi, Yuguang: Gauss maps of translating solitons of mean curvature flow. Proc. Amer. Math. Soc. 142 (2014), no. 12, 4333–4339. 53C44 (58J05)
25.Xue Hu, Dandan Ji, Yuguang Shi:Volume Comparison of Conformally Compact Manifolds with Scalar CurvatureR ≥ −n (n − 1); Ann. Henri Poincar´e 17(2016),953-977 DOI 10.1007/s00023-015-0411-3
26.Yuguang,Shi: The Isoperimetric Inequality on Asymptotically Flat Manifolds with Nonnegative Scalar Curvature, Int. Math. Res. Not. Volume 2016, Issue 22, Pp. 7038-7050
27.Li, Gang; Qing, Jie; Shi, Yuguang Gap phenomena and curvature estimates for conformally compact Einstein manifolds. Trans. Amer. Math. Soc. 369 (2017), no. 6, 4385–4413. 53C25 (58J05)
28.Shi, Yuguang; Tam, Luen-Fai Scalar curvature and singular metrics. Pacific J. Math. 293 (2018), no. 2, 427–470.