Volume and Stability of Singularities
主 题: Volume and Stability of Singularities
报告人: Chenyang Xu(BICMR)
时 间: 2017-08-04 11:00 - 2017-08-04 12:00
地 点: Room 82J04, Jiayibing Building, Jingchunyuan 82, BICMR
\n\tThe concept of KLT (Kawamata log terminal) singularities appears in the minimal model program (MMP) more than three decades ago, and becomes one of the most natural category of singularities to work on, for the study of MMP and many other reasons. One guiding principal the class of klt singularities is the local analogue of the class of varieties with positive first Chern class, i.e., Fano varieties. In this talk, I will discuss our work (joint with Chi Li) on developing an algebraic stability theory of general klt singularities using Chi Li’s definition of normalised volumes. As an application, we prove that the intermediate semistable cone of the metric tangent cone of a klt singularity appearing on the GH limit of Kahler-Einstein Fano manifolds is only determined by the algebraic structure of the singularity but independent of the local metric, which confirms a conjecture by Donaldson-Sun.\n<\/p>