[Progress in Mathematics] Mathematical Analysis of the Rayleigh-Taylor Instability in Magnetohydrodynamic Flows
主 题: [Progress in Mathematics] Mathematical Analysis of the Rayleigh-Taylor Instability in Magnetohydrodynamic Flows
报告人: Song Jiang( Institute of Applied Physics and Computational Mathematics)
时 间: 2017-12-26 10:00 - 2017-12-26 12:00
地 点: Room 77201, Jingchunyuan 78, BICMR
Abstract:<\/span>
\n\n\tThe Rayleigh-Taylor (RT) instability is well known as gravity-driven instability in fluids when a heavy fluid is on top of a light one. It appears in a wide range of applications in science and technology, <\/span>such as in inertia confinement fusion, Tokamak, Z-pinch, supernova explosions. In this talk, mathematical analysis of the magnetic RT instability will be presented, in particular, effects of (impressed) magnetic fields upon the growth of the RT instability will be discussed and analyzed quantitatively. In particular, this talk will focus on compressible magnetohydrodynamic (MHD) flows. We shall show that a sufficiently strong (impressed) magnetic field can inhibit the RT instability; otherwise, instability will still occur in the sense that solutions do not continuously depend on initial data. Moreover, different (sharp) criteria on the strength of magnetic fields which guarantee stability will be compared and analyzed from both mathematical and physical points of view. <\/span> <\/span>\n<\/p>\n
\n\t
\n<\/p>\n
\n\t报告人简介:<\/span>\n<\/p>\n
\n\t江松,北京应用物理与计算数学研究所研究员,应用数学家。主要从事可压缩流体力学的数学理论、计算方法及应用研究。在可压缩纳维-斯托克斯(NS)方程的适定性理论、流体与磁流体瑞利-泰勒不稳定性和小马赫数极限的数学分析方面取得了一系列成果,例如对任何绝热指数γ>1,与合作者证明了具有大外力的三维定常可压缩NS方程弱解的存在性,以及具有大初值的高维非定常NS方程球\/轴对称解的整体存在性。在应用方面,针对武器物理数值模拟的多介质大变形、网格畸变等计算难点,与同事一起提出了若干实用的新算法(如整体ALE局部欧拉自然耦合方法),并研制完成重大武器型号数值模拟软件平台。曾获国家自然科学二等奖、军队科技进步一等奖、中国青年科技奖、求是杰出青年奖等。<\/span><\/span>\n<\/p>\n
\n\t
\n<\/div>