High-Dimensional Statistical Inference: From Vectors to Matrices
主 题: High-Dimensional Statistical Inference: From Vectors to Matrices
报告人: Prof. T. Tony Cai ( University of Pennsylvania)
时 间: 2012-06-21 14:00-15:00
地 点: 理科一号楼1114
Driven by a wide range of applications, high-dimensional statistical inference has seen significant developments over the last few years. These and other related problems have also attracted much interest in a number of fields including applied mathematics, engineering, and statistics. In this talk I will discuss some recent advances on several related problems in high-dimensional inference including compressed sensing, low-rank matrix recovery, and estimation of large covariance matrices. The connections as well as differences among these problems will be also discussed.
演讲人简介:蔡天文博士现任美国宾夕法尼亚大学沃顿商公司Dorothy Silberberg 统计学讲席教授,兼任该校应用数学及计算科学教授。他于1996年在康奈尔大学获得数学博士, 研究方向包括高维统计推断,大范围假设检验,非参数函数估计,函数数据分析,小波方法和应用,统计决策论, 发表了80多篇学术论文。由于出色科研成就,他于2008年获得世界统计学考普斯奖 (COPSS Presidents\' Award), 这是统计学界对于青年统计学家的最高嘉奖,肯定了他在数学和统计学理论与方法上深刻而广泛新发现,包括小波理论的应用、小波回归中区块阈值、优化理论、非参函数估计的适应性,小样本的置信区间、控制误判率的方法; 肯定了他把统计学理论应用到化学成分判别、医学成像和芯片数据分析等领域的尝试。他是《统计年刊》主编(2010-2012),还在另外两个杂志担任编委。更多情况可见
http://www-stat.wharton.upenn.edu/~tcai