摘要:
I will discuss the parabolic gluing method developed by Juan Dávila, Manuel del Pino, Monica Musso, Juncheng Wei, etc., its applications in the constructing of finite time singularities for the harmonic map heat flow and related topics. The talk will be divided into the following parts:
1. Construction of approximate solutions
2. Linear theory for the inner problem-I
3. Linear theory for the inner problem-II
4. Linear theory for the outer problem-I
5. Linear theory for the outer problem-II
6. Estimates for the gluing system
References:
1. Carmen Cortázar, Manuel del Pino, Monica Musso, Green's function and infinite-time bubbling in the critical nonlinear heat equation, J. Eur. Math. Soc. (JEMS) 22 (2020), no. 1, 283-344.
2. Juan Dávila, Manuel del Pino, Juncheng Wei, Singularity formation for the two-dimensional harmonic map flow into S2, Invent. Math. 219 (2020), no. 2, 345–466.
3. Yannick Sire, Juncheng Wei, Youquan Zheng, Yifu Zhou, Finite-time singularity formation for the heat flow of the H-system, arXiv:2311.14336.
时间:6月17日 14:00-16:00,6月19日 14:00-16:00, 6月21日 9:00-11:00,6月24日 14:00-16:00,6月26日 14:00-16:00, 6月28日 9:00-11:00
地点:6.17、6.19、6.21、6.26、6.28 智华楼四元厅 6.24 智华楼王选报告厅