Probability Seminar——Large Deviations for the intersections of two Random Walks
报告人:Bruno Schapira (Aix-Marseille)
时间:2020-11-09 14:00-15:00
地点:Room 1114, Sciences Building No. 1
Abstract: In 2004, van den Berg, Bolthausen and den Hollander, obtained in a tour de force a Large Deviation Principle for the intersection of two Wiener sausages. However, their result was limited to a finite time window. Nevertheless, they conjectured (and provided strong evidence for this) that the same result should hold in infinite time horizon in case of dimension 3 and higher, when Brownian motion is transient. In a series of recent works with Amine Asselah, we proved this conjecture in the discrete setting, when Brownian motion is replaced by a Simple Random Walk on the Euclidean lattice. In this talk, we will try to explain the main steps of the proof.