Random walks, boundaries and measures in Conformal Dynamical System

Ruicen Qiu 丘瑞岑

(under supervision by Zhiqiang Li)

Peking University

May 29, 2024

Random walks, boundaries and measures in Conformal Dynamical S

・ 同 ト ・ ヨ ト ・ ヨ ト

Ruicen Qiu

Iteration of rational maps Kleinian groups

Table of Contents

Conformal Dynamical Systems and Sullivan's Dictionary

• Iteration of rational maps

Kleinian groups

2 boundary and measures

- hyperbolic groups
- Expanding dynamics

Iteration of rational maps Kleinian groups

Fatou and Julia

Let S be a Riemann surface (usually $S = \widehat{\mathbb{C}}$) and $f \in Hol(S)$ (with deg $f \ge 2$). If $S = \widehat{\mathbb{C}}$, then f is a rational map.

Fatou and Julia

Let *S* be a Riemann surface (usually $S = \widehat{\mathbb{C}}$) and $f \in Hol(S)$ (with deg $f \ge 2$). If $S = \widehat{\mathbb{C}}$, then *f* is a rational map. The *Fatou set* F(f) is the largest domain where $\{f^n\}_{n \in \mathbb{Z}_+}$ constitute a normal family. Its complement $J(f) = S \setminus F(f)$ is called the *Julia set*.

Fatou and Julia

Let *S* be a Riemann surface (usually $S = \widehat{\mathbb{C}}$) and $f \in Hol(S)$ (with deg $f \ge 2$). If $S = \widehat{\mathbb{C}}$, then *f* is a rational map. The *Fatou set* F(f) is the largest domain where $\{f^n\}_{n \in \mathbb{Z}_+}$ constitute a normal family. Its complement $J(f) = S \setminus F(f)$ is called the *Julia set*.

Theorem (No Julia set)

If $f: S \rightarrow S$ is conformal on a hyperbolic surface S, then the Fatou set is the whole surface F(f) = S.

3/29

Fatou and Julia

Let *S* be a Riemann surface (usually $S = \widehat{\mathbb{C}}$) and $f \in Hol(S)$ (with deg $f \ge 2$). If $S = \widehat{\mathbb{C}}$, then *f* is a rational map. The *Fatou set* F(f) is the largest domain where $\{f^n\}_{n \in \mathbb{Z}_+}$ constitute a normal family. Its complement $J(f) = S \setminus F(f)$ is called the *Julia set*.

Theorem (No Julia set)

If $f: S \rightarrow S$ is conformal on a hyperbolic surface S, then the Fatou set is the whole surface F(f) = S.

Both the Fatou set and the Julia set are forward and backward *f*-invariant. Dynamics restricted to Fatou components can be classified into 4 types (attracting, parabolic, and 2 types of irrational rotations).

Theorem (Sulllivan's no wandering domain theorem)

Every component of the Fatou set eventually cycles, and there are finitely many periodic components.

200

3/29

polynomial dynamics

Let $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ be a polynomial and $\mathcal{A}(\infty)$ be the superattracting basin of ∞ . Its complement $K(f) = \widehat{\mathbb{C}} \setminus \mathcal{A}(\infty)$ is called the filled Julia set. By Böttcher's theorem (superattracting basin either is conformally conjugate to z^d or contains another critical point), there is a dichotomy

Theorem

The filled Julia set K(f) is connected iff its complement $\mathcal{A}(\infty)$ is conformally conjugate to the action of z^d on the unit disk \mathbb{D} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Iteration of rational maps Kleinian groups

polynomial dynamics

The closure of each (super)attracting basin contains the Julia set. Hence $J(f) = \partial A(\infty) = \partial K(f)$.

Figure: Connected Julia sets of polynomials $z^2 + (-0.1226 + 0.7449i)$, $z^2 + i$, and $z^2 - 1$.

harmonic measures for polynomials

We moreover assume that $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is a *hyperbolic* polynomial with a connected Julia set J = J(f). The basin of ∞ is also denoted by $\Omega = \mathcal{A}(\infty)$.

Hyperbolic: equipped with some conformal metric, |f'(z)| > 1 for all $z \in J(f)$. That is, f is expanding on the Julia set J.

harmonic measures for polynomials

We moreover assume that $f: \widehat{\mathbb{C}} \to \widehat{\mathbb{C}}$ is a *hyperbolic* polynomial with a connected Julia set J = J(f). The basin of ∞ is also denoted by $\Omega = \mathcal{A}(\infty)$.

Hyperbolic: equipped with some conformal metric, |f'(z)| > 1 for all $z \in J(f)$. That is, f is expanding on the Julia set J.

Definition

The harmonic measure $\{\nu_x\}_{x\in\Omega}$ is a family of Borel probabilities $\{\nu_x\} \subseteq \mathcal{B}(J)$ such that the following (Solution of Dirichlet problem) holds: for all continuous function $\phi: J \to \mathbb{R}$, the function

$$\widetilde{\phi}(x) \coloneqq \int_{z \in J} \phi(z) d\nu_x(z), x \in \Omega,$$
 (1.1)

is a harmonic extension of ϕ .

harmonic measures for polynomials

Consider a Riemann mapping $\phi \colon \mathbb{D} \to \Omega$ from the unit disk to the basin of ∞ . The harmonic measure for \mathbb{D} (seen from 0) is the Lebesgue measure $\nu_{0,\mathbb{D}} = \lambda$.

Recall: harmonicity is preserved by conformal maps. If ϕ extends continuously to $\partial \mathbb{D}$, then $\nu_{\phi(0),\Omega} = \phi_* \lambda$. It remains true in general by Fatou's theorem (angular limit of ϕ exists λ -a.e.)

$$\bigcirc \longrightarrow \bigcirc$$

Iteration of rational maps Kleinian groups

ergodic properties of the harmonic measure: Brolin and Lyubich

The harmonic measure $\nu = \nu_{\infty}$ seen from ∞ is *f*-invariant and supported on the Julia set *J*. (By Böttcher's theorem, choose ϕ such that $f\phi(z) = \phi(z^d)$)

Iteration of rational maps Kleinian groups

ergodic properties of the harmonic measure: Brolin and Lyubich

The harmonic measure $\nu = \nu_{\infty}$ seen from ∞ is *f*-invariant and supported on the Julia set *J*. (By Böttcher's theorem, choose ϕ such that $f\phi(z) = \phi(z^d)$) The harmonic measure ν is the measure of maximal entropy.

Recall: variational principle for entropy:

$$h_{\mu}(f) \leqslant h_{\mathrm{top}}(f) = \ln(\deg f).$$
 (1.2)

Motivation of our work: generalize the classical harmonic measure.

Iteration of rational maps Kleinian groups

Table of Contents

Conformal Dynamical Systems and Sullivan's Dictionary

- Iteration of rational maps
- Kleinian groups

2 boundary and measures

- hyperbolic groups
- Expanding dynamics

Iteration of rational maps Kleinian groups

Sullivan's dictionary

Discrete (finitely generated) (torsion-free) subgroup G of $\operatorname{Isom}_+(\mathbb{H}^3) = \operatorname{Conf}(\widehat{\mathbb{C}}) = PSL(2,\mathbb{C})$ (acting on $S^2 = \widehat{\mathbb{C}} = \partial \mathbb{H}^3$).

Sullivan's dictionary

Discrete (finitely generated) (torsion-free) subgroup G of $\operatorname{Isom}_+(\mathbb{H}^3) = \operatorname{Conf}(\widehat{\mathbb{C}}) = PSL(2, \mathbb{C})$ (acting on $S^2 = \widehat{\mathbb{C}} = \partial \mathbb{H}^3$). The *limit set* $\Lambda G = \{\lim_{n \to \infty} g_n x : g_n \in G\} \subseteq S^2$. Its complement $\Omega G = S^2 \setminus \Lambda G$ is called the *domain of discontinuity* or the ordinary set.

Sullivan's dictionary

Discrete (finitely generated) (torsion-free) subgroup G of $\operatorname{Isom}_+(\mathbb{H}^3) = \operatorname{Conf}(\widehat{\mathbb{C}}) = PSL(2, \mathbb{C})$ (acting on $S^2 = \widehat{\mathbb{C}} = \partial \mathbb{H}^3$). The *limit set* $\Lambda G = \{\lim_{n \to \infty} g_n x : g_n \in G\} \subseteq S^2$. Its complement $\Omega G = S^2 \setminus \Lambda G$ is called the *domain of discontinuity* or the ordinary set.

properties	Kleinian groups	rational maps
dichotomy:		
chaotic v.s. normal	limit set v.s. ordinary set	Julia set v.s. Fatou set
parameters	generators	coefficients(preimages)
density of expansion	dense in limit set	dense in Julia set
in chaotic part	hyperbolic fixed points	expanding periodic points
finiteness of normal part	Ahlfors finiteness theorem	no wandering domain
hyperbolicity	convex cocompact	expansion on Julia set
structural stability		
of hyperbolicity	True	True
geometrization	Cannon's conjecture	Thurston's characterization

Iteration of rational maps Kleinian groups

Generalization of harmonic measures?

The simplest case: hyperbolic rational maps. Restricting to the Julia set, we obtain an expanding map $f: J \rightarrow J$.

Generalization of harmonic measures?

The simplest case: hyperbolic rational maps. Restricting to the Julia set, we obtain an expanding map $f: J \rightarrow J$.

Translate by Sullivan's dictionary: harmonic measure for hyperbolic groups, in particular, a discrete harmonic measure given by random walks on groups.

Generalization of harmonic measures?

The simplest case: hyperbolic rational maps. Restricting to the Julia set, we obtain an expanding map $f: J \rightarrow J$.

Translate by Sullivan's dictionary: harmonic measure for hyperbolic groups, in particular, a discrete harmonic measure given by random walks on groups.

What we have done: build a discrete harmonic measure given by random walk on a self-similar graph associated with the expanding dynamics.

Table of Contents

Conformal Dynamical Systems and Sullivan's Dictionary

- Iteration of rational maps
- Kleinian groups

2 boundary and measures

- hyperbolic groups
- Expanding dynamics

hyperbolic groups Expanding dynamics

Gromov hyperbolic groups

Definition. A finitely generated group $G = \langle S \rangle$ is called *Gromov hyperbolic* if the Cayley graph satisfies the δ -thin triangle property, i.e.

hyperbolic groups Expanding dynamics

Gromov hyperbolic groups

Definition. A finitely generated group $G = \langle S \rangle$ is called *Gromov hyperbolic* if the Cayley graph satisfies the δ -thin triangle property, i.e.

For each geodesic triangle, each edge is contained in the $\delta\text{-neighborhood}$ of other 2 edges.

X be a (locally compact) hyperbolic space (with infinite diameter).

• Gromov boundary (defined by using Gromov product);

X be a (locally compact) hyperbolic space (with infinite diameter).

- Gromov boundary (defined by using Gromov product);
- horofunction (Busemann) boundary (defined by using Busemann function $\beta(x, y) = d(x, y) d(0, y)$).

X be a (locally compact) hyperbolic space (with infinite diameter).

- Gromov boundary (defined by using Gromov product);
- horofunction (Busemann) boundary (defined by using Busemann function $\beta(x, y) = d(x, y) d(0, y)$).

If we moreover let X be a graph and $p:X^0 imes X^0 o [0,1]$ be a transition probability, then we have

Poissoin boundary (represents all bounded harmonic functions);

X be a (locally compact) hyperbolic space (with infinite diameter).

- Gromov boundary (defined by using Gromov product);
- horofunction (Busemann) boundary (defined by using Busemann function $\beta(x, y) = d(x, y) d(0, y)$).

If we moreover let X be a graph and $p:X^0 imes X^0 o [0,1]$ be a transition probability, then we have

- Poissoin boundary (represents all bounded harmonic functions);
- Martin boundary (represents all harmonic functions);

X be a (locally compact) hyperbolic space (with infinite diameter).

- Gromov boundary (defined by using Gromov product);
- horofunction (Busemann) boundary (defined by using Busemann function $\beta(x, y) = d(x, y) d(0, y)$).

If we moreover let X be a graph and $p:X^0 imes X^0 o [0,1]$ be a transition probability, then we have

- Poissoin boundary (represents all bounded harmonic functions);
- Martin boundary (represents all harmonic functions);

Definition. The *Gromov boundary* is

$$\partial X = \left\{ \{x_n\}_{n \in \mathbb{Z}_+} : \lim_{n, m \to \infty} \langle x_n, x_m \rangle_o = \infty \right\} / \sim,$$
$$\{x_n\} \sim \{y_n\} \iff \lim_{n \to \infty} \langle x_n, y_n \rangle_o = \infty.$$

・ロト・西ト・ヨト・ヨー うへの

Definition. The *Gromov boundary* is

$$\partial X = \left\{ \{x_n\}_{n \in \mathbb{Z}_+} : \lim_{n, m \to \infty} \langle x_n, x_m \rangle_o = \infty \right\} / \sim,$$
$$\{x_n\} \sim \{y_n\} \iff \lim_{n \to \infty} \langle x_n, y_n \rangle_o = \infty.$$

equipped with a class of visual metric $\rho_a(\xi, \eta) \asymp \exp(-a\langle \xi, \eta \rangle_o)$.

Definition. The *Gromov boundary* is

$$\partial X = \left\{ \{x_n\}_{n \in \mathbb{Z}_+} : \lim_{n, m \to \infty} \langle x_n, x_m \rangle_o = \infty \right\} / \sim,$$
$$\{x_n\} \sim \{y_n\} \iff \lim_{n \to \infty} \langle x_n, y_n \rangle_o = \infty.$$

equipped with a class of visual metric $\rho_a(\xi, \eta) \asymp \exp(-a\langle \xi, \eta \rangle_o)$.

The *horofunction boundary* is the boundary of the embedding image of $y \mapsto \beta(\cdot, y)$ w.r.t. pointwise convergence topology.

hyperbolic groups Expanding dynamics

Random walk and Martin boundary

 $p^{(n)}(x, y)$ - the *n*-step transition probability.

hyperbolic groups Expanding dynamics

Random walk and Martin boundary

 $p^{(n)}(x, y)$ - the *n*-step transition probability. Z_0, \dots, Z_n, \dots - random variables.

hyperbolic groups Expanding dynamics

Random walk and Martin boundary

 $p^{(n)}(x, y) - \text{the } n\text{-step transition probability.}$ $Z_0, \dots, Z_n, \dots - \text{random variables.}$ $G(x, y) = \mathbb{E} \left(\#\{n : Z_n = y\} \right) = \sum_{n=0}^{\infty} p^{(n)}(x, y) - \text{the Green function.}$ $F(x, y) = \mathbb{P} \left(\exists n \ge 0, Z_n = y \right).$

hyperbolic groups Expanding dynamics

Random walk and Martin boundary

 $p^{(n)}(x, y) - \text{the } n\text{-step transition probability.}$ $Z_0, \dots, Z_n, \dots - \text{random variables.}$ $G(x, y) = \mathbb{E} \left(\#\{n : Z_n = y\} \right) = \sum_{n=0}^{\infty} p^{(n)}(x, y) - \text{the Green function.}$ $F(x, y) = \mathbb{P} \left(\exists n \ge 0, Z_n = y \right).$ $K(x, y) = \frac{G(x, y)}{G(o, y)} = \frac{F(x, y)}{F(o, y)} - \text{the Martin kernel.}$

hyperbolic groups Expanding dynamics

Random walk and Martin boundary

 $p^{(n)}(x, y) - \text{the } n\text{-step transition probability.}$ $Z_0, \dots, Z_n, \dots - \text{random variables.}$ $G(x, y) = \mathbb{E} \left(\#\{n : Z_n = y\} \right) = \sum_{n=0}^{\infty} p^{(n)}(x, y) - \text{the Green function.}$ $F(x, y) = \mathbb{P} \left(\exists n \ge 0, Z_n = y \right).$ $K(x, y) = \frac{G(x, y)}{G(o, y)} = \frac{F(x, y)}{F(o, y)} - \text{the Martin kernel.}$ Martin boundary $\partial_M X$ is constructed by

$$y_n \longrightarrow \xi \in \partial_M X \iff K(\cdot, y_n) \stackrel{\text{pointwise}}{\longrightarrow} K(\cdot, \xi).$$

hyperbolic groups Expanding dynamics

Random walk and Martin boundary

 $p^{(n)}(x, y) - \text{the } n\text{-step transition probability.}$ $Z_0, \dots, Z_n, \dots - \text{random variables.}$ $G(x, y) = \mathbb{E} \left(\#\{n : Z_n = y\} \right) = \sum_{n=0}^{\infty} p^{(n)}(x, y) - \text{the Green function.}$ $F(x, y) = \mathbb{P} \left(\exists n \ge 0, Z_n = y \right).$ $K(x, y) = \frac{G(x, y)}{G(o, y)} = \frac{F(x, y)}{F(o, y)} - \text{the Martin kernel.}$ $Martin \text{ boundary } \partial_M X \text{ is constructed by}$

$$y_n \longrightarrow \xi \in \partial_M X \iff K(\cdot, y_n) \stackrel{\text{pointwise}}{\longrightarrow} K(\cdot, \xi).$$

Theorem (Poisson-Martin representation)

For every positive harmonic function h on X, there is a positive Borel measure ν_h on $\partial_M X$ such that

$$h(x) = \int_{\partial_M X} \mathcal{K}(x,\xi) \mathrm{d}\nu_h(\xi). \tag{2.1}$$

hyperbolic groups Expanding dynamics

Relations between the boundaries

Theorem (A. Ancona, 1988)

For uniformly irreducible, finite range random walks on hyperbolic graph, Martin boundary \cong Gromov boundary.

1/

Relations between the boundaries

Theorem (A. Ancona, 1988)

For uniformly irreducible, finite range random walks on hyperbolic graph, Martin boundary \cong Gromov boundary.

uniformly irreducible -
$$\exists c_0, v, \text{s.t.}, d(x, y) \leq 1 \Rightarrow \sum_{j=0}^{r} p^{(j)}(x, y) \geqslant c_0.$$

イロト イヨト イヨト

Relations between the boundaries

Theorem (A. Ancona, 1988)

For uniformly irreducible, finite range random walks on hyperbolic graph, Martin boundary \cong Gromov boundary.

uniformly irreducible -
$$\exists c_0, v, \text{s.t.}, d(x, y) \leq 1 \Rightarrow \sum_{j=0}^{r} p^{(j)}(x, y) \geq c_0.$$

 (Γ, μ) - hyperbolic group with symmetric transition probability (i.e. $\mu(g) = \mu(g^{-1})$) Green metric - $d_G(x, y) := -\log F(x, y)$.

Relations between the boundaries

Theorem (A. Ancona, 1988)

For uniformly irreducible, finite range random walks on hyperbolic graph, Martin boundary \cong Gromov boundary.

uniformly irreducible -
$$\exists c_0, v, \text{s.t.}, d(x, y) \leq 1 \Rightarrow \sum_{j=0}^{v} p^{(j)}(x, y) \geq c_0.$$

 (Γ,μ) - hyperbolic group with symmetric transition probability (i.e. $\mu(g)=\mu(g^{-1}))$

Green metric -
$$d_G(x, y) \coloneqq -\log F(x, y)$$
.

The Martin boundary is exactly the horofunction boundary w.r.t. Green metric d_G , which is hyperbolic, and Q.I. to d.

Relations between the boundaries

Theorem (A. Ancona, 1988)

For uniformly irreducible, finite range random walks on hyperbolic graph, Martin boundary \cong Gromov boundary.

uniformly irreducible -
$$\exists c_0, v, \text{s.t.}, d(x, y) \leq 1 \Rightarrow \sum_{j=0}^{r} p^{(j)}(x, y) \geq c_0.$$

 (Γ,μ) - hyperbolic group with symmetric transition probability (i.e. $\mu(g)=\mu(g^{-1}))$

Green metric -
$$d_G(x, y) \coloneqq -\log F(x, y)$$
.

The Martin boundary is exactly the horofunction boundary w.r.t. Green metric d_G , which is hyperbolic, and Q.I. to d.

Theorem (A. Ancona's Inequality, 1988)

 $\forall \delta \ge 0, \exists C = C(\delta), \text{ for } x, y \in X, z \in N_{\delta}([x, y]),$

 $F(x,z)F(z,y) \leqslant F(x,y) \leqslant C(\delta)F(x,z)F(z,y).$

うへで 17/29

hyperbolic groups Expanding dynamics

Conformal measure

Patterson-Sullivan measure

$$\mu_{s} = \lim_{n \to \infty} \left(\sum_{|g| \leq n} e^{-s|g|} \right)^{-1} \left(\sum_{|g| \leq n} e^{-s|g|} \delta_{g} \right).$$

<ロト < 回 ト < 巨 ト < 巨 ト < 巨 ト 三 の Q (C) 18/29

hyperbolic groups Expanding dynamics

Conformal measure

Patterson-Sullivan measure

- ロ ト 4 雪 ト 4 雪 ト 4 回 ト 4 回 ト

hyperbolic groups Expanding dynamics

Conformal measure

Patterson-Sullivan measure

 $\begin{array}{l} v \text{ - volume growth rate } \lim_{n \to \infty} \log(\#B(0,n)/n). \\ 0 < s < v \implies \sum_{|g| \leqslant n} e^{-s|g|} \asymp \sum_{k=0}^{n} e^{(v-s)k} \to 1/(1-e^{v-s}). \\ s \to v \implies \mu_v \text{ is supported on boundary (divergence type)} \end{array}$

Harmonic measure

 $\mu \in \mathcal{M}(\Gamma)$ - transition probability. $\mu^{(n)}$ - *n*-th iteration of μ . Fact: μ is transient $\implies \mu^{(n)}$ "converges" to a boundary distribution μ_h .

Harmonic measure

 $\mu \in \mathcal{M}(\Gamma)$ - transition probability. $\mu^{(n)}$ - *n*-th iteration of μ . Fact: μ is transient $\implies \mu^{(n)}$ "converges" to a boundary distribution μ_{h} .

Theorem (characterization of Poisson boundary)

If h is a **bounded harmonic** function on X, then there exists $\varphi \in L^{\infty}(\partial X, \mu_h)$, such that

$$h(x) = \int \varphi K(x, \cdot) d\mu_h.$$

イロト 不得 トイヨト イヨト 二日

Conformal measure v.s. Harmonic measure

dilute a (weighted) uniform distribution \iff iterate a transition probability.

Conformal measure v.s. Harmonic measure

dilute a (weighted) uniform distribution \iff iterate a transition probability.

Conformality (w.r.t. visual metric ρ_a) - $\frac{dg_*\mu}{d\mu} = \left(\frac{g_*\rho_a}{\rho_a}\right)^{\delta}$.

э

20 / 29

Conformal measure v.s. Harmonic measure

dilute a (weighted) uniform distribution \iff iterate a transition probability.

Conformality (w.r.t. visual metric
$$\rho_a$$
) - $\frac{dg_*\mu}{d\mu} = \left(\frac{g_*\rho_a}{\rho_a}\right)^{\delta}$.
Quasi-conformality - $\frac{dg_*\mu_v}{d\mu_v} \asymp \left(\frac{g_*\rho_a}{\rho_a}\right)^{\delta} \asymp e^{-a\delta\beta_{\xi}(g)}$.

э

20 / 29

Conformal measure v.s. Harmonic measure

dilute a (weighted) uniform distribution \iff iterate a transition probability.

Conformality (w.r.t. visual metric
$$\rho_a$$
) - $\frac{dg_*\mu}{d\mu} = \left(\frac{g_*\rho_a}{\rho_a}\right)^{\delta}$.
Quasi-conformality - $\frac{dg_*\mu_v}{d\mu_v} \asymp \left(\frac{g_*\rho_a}{\rho_a}\right)^{\delta} \asymp e^{-a\delta\beta_{\xi}(g)}$.
Harmonicity - $\frac{dg_*\mu_h}{d\mu_h}(\xi) = K(g,\xi)$.

Conformal measure v.s. Harmonic measure

dilute a (weighted) uniform distribution \iff iterate a transition probability.

Conformality (w.r.t. visual metric ρ_a) - $\frac{dg_*\mu}{d\mu} = \left(\frac{g_*\rho_a}{\rho_a}\right)^{\delta}$. Quasi-conformality - $\frac{dg_*\mu_v}{d\mu_v} \asymp \left(\frac{g_*\rho_a}{\rho_a}\right)^{\delta} \asymp e^{-a\delta\beta_{\xi}(g)}$. Harmonicity - $\frac{dg_*\mu_h}{d\mu_h}(\xi) = K(g,\xi)$. $I_G = \lim_{n \to \infty} \mathbb{E}(d_G(1, Z_n(g)))/n, I = \lim_{n \to \infty} \mathbb{E}(d(1, Z_n(g)))/n - drift$

Theorem (S. Blachère, P. Haïssinsky , P. Mathieu, 2009)

The following are equivalent:

- The equality of $I_G \leq vI$ holds.
- $\mu_{v} \simeq \mu_{h}$.
- μ_h is quasi-conformal.

hyperbolic groups Expanding dynamics

Table of Contents

Conformal Dynamical Systems and Sullivan's Dictionary

- Iteration of rational maps
- Kleinian groups
- 2 boundary and measures
 - hyperbolic groups
 - Expanding dynamics

Distance expanding dynamical systems

Definition. $f: X \rightarrow X$ is called λ -distance expanding if

 $\exists \xi > 0 \forall d(x, y) < \xi, d(fx, fy) \geqslant \lambda d(x, y).$

 $S = \{R_1, \cdots, R_n\}$ - Markov partition

- int $R_i \cap$ int $R_j = \emptyset$ if $i \neq j$;
- $R_i = \overline{\operatorname{int} R_i};$
- $f(\operatorname{int} R_i) \cap \operatorname{int} R_j \neq \implies f(\operatorname{int} R_i) \supset \operatorname{int} R_j$.

 $A_{R_iR_j} = 1 \iff f(\operatorname{int} R_i) \supset \operatorname{int} R_j.$ semi-conjugacy $\left(\sum_{i=1}^{+} f(i) = C^{\mathbb{Z} \ge 0} \land A^{-1}\right)$

$$\left(\Sigma_{\mathcal{A}}^{+}=\{(u_{n})_{n\geq 0}\in S^{\mathbb{Z}\geq 0}\colon \mathcal{A}_{u_{i}u_{i+1}}=1\},\sigma_{\mathcal{A}}\right)\to (X,f).$$

・ロマ・山マ・山マ・山マ・

Tile Graph

Vertices:

$$\Gamma^{0} = S^{\omega} = \{u_{0} \cdots u_{n} \coloneqq u_{0} \cap \cdots \cap f^{-n}u_{n} \colon A_{u_{i}u_{i+1}} = 1\} \cup \{\emptyset\}.$$
(called *tiles*)
Edges: $u - v$ iff $||u| - |v|| \leq 1$ and $u \cap v \neq \emptyset$.
d is called a *visual metric* if for some $\Lambda > 1$,

- dist(x, y) ≥ Λ⁻ⁿ, where x, y are disjoint n-tiles (in the sense of closed subsets);
- diam $(x) \asymp \Lambda^{-|x|}$;

Fact. Γ is Gromov hyperbolic with Gromov boundary *X*, and the visual metric is Hölder equivalent to *d*.

イロト イヨト イヨト

hyperbolic groups Expanding dynamics

Tile graph

Figure: The tile graph of the doubling map on the circle.

Adapt the random walk to dynamics

A transition probablity $p : \Gamma \to \mathcal{M}(\Gamma)$ is called to have *uniformly* bounded support if $\exists C_0, \ p(x, y) > 0 \implies d(x, y) \leq C_0$.

Adapt the random walk to dynamics

A transition probablity $p : \Gamma \to \mathcal{M}(\Gamma)$ is called to have *uniformly* bounded support if $\exists C_0, \ p(x, y) > 0 \implies d(x, y) \leq C_0.$ p is called *f-invariant* if for $\emptyset \neq x \in \Gamma, \ \sigma_*(p(x)) = p(\sigma x).$ $(\sigma : u_0 \cdots u_n \mapsto u_1 \cdots u_n)$

Adapt the random walk to dynamics

A transition probability $p: \Gamma \to \mathcal{M}(\Gamma)$ is called to have *uniformly* bounded support if $\exists C_0, p(x, y) > 0 \implies d(x, y) \leq C_0$. *p* is called *f-invariant* if for $\emptyset \neq x \in \Gamma$, $\sigma_*(p(x)) = p(\sigma x)$. $(\sigma: u_0 \cdots u_n \mapsto u_1 \cdots u_n)$ We moreover assume that:

The random walk always goes down: for all $x, y \in \Gamma$, if p(x, y) > 0, then |y| > |x|.

The random walk inherits the edges of the graph: for all $x, y \in \Gamma$, if |y| = |x| + 1 and d(x, y) = 1, then p(x, y) > 0.

Our results

The Martin boundary of the random walk on the tile graph maps surjectively to the phase space:

Theorem

Suppose that f: $X \to X$ is an open transitive distance-expanding map on a compact metric space (X, ρ) , α is a sufficiently fine Markov partition, and (Γ, p) is random walk on the tile graph $\Gamma = \Gamma(f, \alpha)$ with p satisfying the assumptions in the previous page. Then there is a natural surjection Φ from the Martin boundary $\partial_M \Gamma$ of (Γ, p) to X. Is the Martin boundary homeomorphic to the phase space? Not true. We provide a counterexample. Even for the z^2 map on the unit circle, it is not true when the transition probability p is unbalanced. The radial growth rate of the Green function at a single point $x \in X$ may be different.

However, if the random walk is irreducible, the result of A. Ancona implies the homeomorphism of the Martin boundary and the phase space.

Our results

Based on the asymptotic quantities including

$$I_{G} := \lim_{n \to +\infty} -n^{-1} \log(G(Z_{0}, Z_{n})) \text{ and } I := \lim_{n \to +\infty} -n^{-1} |Z_{n}|, \quad (2.2)$$

we can give a formula of the fractal dimension of the harmonic measure.

Theorem

Under the notations and hypotheses above, if X is equipped with an a-visual metric ρ for a sufficiently small constant a > 0, then the packing dimension of the harmonic measure ν on X is equal to $\dim_P \nu = \frac{l_G}{al}$.

The packing dimension of a measure is:

 $\dim_{P} \mu = \inf \{\dim_{P}(A) : A \subseteq X, \mu(A) > 0\} = \inf \{\dim_{P}(A) : A \subseteq X, \mu(A) = 0\}$

The packing dimension is equal to the supremum of the pointwise local dimension. 28/29

Conformal measure v.s. harmonic measure

The harmonic measure ν is *f*-quasi-invariant. If we moreover assume that p(x, y) > 0 implies |y| = |x| + 1, then ν is *f*-invariant. Conformality $f^*\mu = d\mu$ (d = number of preimages) quasi-conformality $f^*\mu_c \simeq d\mu_c$. Questions:

- Conformal measure/measure of maximal entropy \asymp / \perp harmonic measure?
- Is the Hausdorff dimension of the harmonic measure the same?
- Is the fundamental inequality still true? Variation principle understanding?
- Can we apply the thermodynamical formalism and realize the harmonic measure as a measure of maximal pressure? what is the potential?