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1. Introduction

1.1. Let us first introduce a few notation and discuss some motivations.

‚ k: perfect field of characteristic p ą 0.
‚ Λ “ F`: finite field of characteristic ` ‰ p.
‚ X: smooth scheme over k.
‚ F : constructible etale sheaf of Λ-modules on X. (simply viewed as a Λ-representation of

the etale fundamental group π1pUq for an open subscheme U Ď X)
‚ Geometric ramification studies the behavior of F along the boundary XzU .
‚ The characteristic class of F measures the ramification of F . (It is the discrete version of

the characteristic class for a vector bundle.)
‚ For any separated morphism f : X Ñ Y , we put KX{Y “ Rf !Λ andDX{Y p´q “ RHomp´,KX{Y q

‚ We omit to write R or L to denote the derived functors.

There are two kinds of characteristic classes. Their definitions are quite different.

Conjecture 1.2 (Takeshi Saito, 2015). Consider the cycle class map cl : CH0pXq Ñ H0pX,KX{kq,

where KX{k “ Rf !Λ and f : X Ñ Speck. Then we have

clpccX{kpFqq “ CX{kpFq.

‚ The cohomological characteristic class CX{kpFq P H0pX,KX{kq is implicitly defined in
[SGA7] and studied by Abbes and Saito around 2007.

‚ The geometric characteristic class ccX{kpFq P CH0pXq is defined by Saito around 2015.
‚ They can be viewed as higher dimensional (global) analogues of the Artin conductors (local

invariants).
‚ Characteristic classes are quite important! Here is an application. Assume k is a finite field

and X smooth and projective. Consider the Grothendieck L-function

LpX,F , tq “ detp1´ Frob ¨ t;RΓpXk̄,Fqq´1.

It satisfies the following functional equation

LpX,F , tq “ t´χpX,Fq ¨ εpX,Fq ¨ LpX,DpFq, t´1q.

Then we have the global index formula for the Euler-Poincare characteristic

χpX,Fq “ degccX{kpFq “ TrCX{kpFq,
and the twist formula for the global epsilon factor

εpX,F b Gq “ εpX,FqrkG ¨ detGpρXp´ccX{kpFqqq,
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where ρX : CH0pXq Ñ πab
1 pXq is the reciprocity map and G is any smooth sheaf on X.

Here is our main result:

Theorem 1.3 (Yang-Zhao, 2022). Saito’s conjecture holds if X is quasi-projective.

If using more 8-category, we could be able to prove Saito’s conjecture in general.

1.4. Idea of the proof. In some sense, we have to give a cohomological construction for Saito’s
characteristic cycle. So, we have to propose a cohomological way to study ramification theory.

2. Cohomological approach

2.1. We recall the transversality condition introduced in [3, 2.1], which is a relative version of
the transversality condition studied by Saito [1, Definition 8.5]. Consider the following cartesian
diagram in SchS :

X

lp

��

i // Y

f

��
W

δ // T.

(2.1.1)

By [3, 2.11], there is a functor δ∆ : DctfpY,Λq Ñ DctfpX,Λq such that for any F P DctfpY,Λq, we
have a distinguished triangle

i˚F bL p˚δ!Λ
cδ,f,F
ÝÝÝÑ i!F Ñ δ∆F `1

ÝÝÑ .(2.1.2)

The first map is defined to be the composition

i˚F bL p˚δ!Λ
idbb.c
ÝÝÝÝÑ i˚F bL i!f˚Λ adj

ÝÝÑ i!i!pi
˚F bL i!f˚Λq proj.formula

ÝÝÝÝÝÝÝÑ
»

i!pF bL i!i!f˚Λq
adj
ÝÝÑ i!F .

We say that the morphism δ is F-transversal if δ∆pFq=0.
The following definition can be viewed as a cohomological version of smooth morphisms (cf.

Lu-Zheng and Peter Scholze).

Definition 2.2. Fix F P DctfpY,Λq. We say f is F-smooth if for any such diagram (2.1.1), the
morphism δ is F-transversal.

2.3. Consider a commutative diagram in SchS :

Z �
� τ // X

f //

h ��

Y,

g��
S

(2.3.1)

where τ : Z Ñ X is a closed immersion and g is a smooth morphism. Let us denote the diagram
(2.3.1) simply by ∆ “ ∆Z

X{Y {S Let F P DctfpX,Λq such that XzZ Ñ Y is F |XzZ-smooth and that

h : X Ñ S is F-smooth.
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2.4. Let i : X ˆY X Ñ X ˆS X be the base change of the diagonal morphism δ : Y Ñ Y ˆS Y :

X

f

��

_�

δ1
��

l

X_�

δ0
��

X ˆY X
i //

p

��

// X ˆS X

fˆf

��
Y

δ // Y ˆS Y,

l

(2.4.1)

where δ0 and δ1 are the diagonal morphisms. Put KX{S “ h!Λ and K∆ :“ δ∆KX{S » δ˚1 δ
∆δ0˚KX{S .

We have the following distinguished triangle

KX{Y Ñ KX{S Ñ K∆
`1
ÝÝÑ .(2.4.2)

We put

HS :“ RHomXˆSXppr˚2F ,pr!
1Fq

»
ÐÝ TS :“ F bL

S DX{SpFq.

Lemma 2.5. δ˚1 δ
∆TS is supported on Z.

Definition 2.6 ([3, Definition 4.6]). The relative cohomological characteristic class CX{SpFq is the
composition (cf. [3, 3.1])

Λ
id
ÝÑ RHompF ,Fq ÝÑ

»
δ!

0HS ÐÝ
»
δ!

0TS ÝÑ δ˚0TS
ev
ÝÑ KX{S .(2.6.1)

The non-acyclicity class C∆pFq P H0
ZpX,K∆q is the composition

Λ Ñ δ!
0HS

»
ÐÝ δ!

0TS » δ!
1i

!TS ÝÑ δ˚1 i
!TS Ñ δ˚1 δ

∆TS
»
ÐÝ τ˚τ

!δ˚1 δ
∆TS Ñ τ˚τ

!KX{Y {S .(2.6.2)

If the following condition holds:

H0pZ,KZ{Y q “ 0 and H1pZ,KZ{Y q “ 0(2.6.3)

then the map H0
ZpX,KX{Sq ÝÑ H0

ZpX,KX{Y {Sq is an isomorphism. In this case, the class C∆pFq P
H0
ZpX,KX{Y {Sq defines an element of H0

ZpX,KX{Sq.
Now we summarize the functorial properties for the non-acyclicity classes (cf. [3, Theorem 1.9,

Proposition 1.11, Theorem 1.12, Theorem 1.14]).

Theorem 2.7 (Yang-Zhao).

(1) (Fibration formula) If H0pZ,KZ{Y q “ H1pZ,KZ{Y q “ 0, then we have

CX{SpFq “ crpf
˚Ω1,_

Y {Sq X CX{Y pFq ` C∆pFq in H0pX,KX{Sq.(2.7.1)

(2) (Pull-back) Let b : S1 Ñ S be a morphism of Noetherian schemes. Let ∆1 “ ∆Z1

X 1{Y 1{S1 be

the base change of ∆ “ ∆Z
X{Y {S by b : S1 Ñ S. Let bX : X 1 “ X ˆS S

1 Ñ X be the base

change of b by X Ñ S. Then we have

b˚XC∆pFq “ C∆1pb˚XFq in H0
Z1pX 1,KX 1{Y 1{S1q,(2.7.2)

where b˚X : H0
ZpX,KX{Y {Sq Ñ H0

Z1pX 1,K∆1q is the induced pull-back morphism.

(3) (Proper push-forward) Consider a diagram ∆1 “ ∆Z1

X 1{Y {S . Let s : X Ñ X 1 be a proper

morphism over Y such that Z Ď s´1pZ 1q. Then we have

s˚pC∆pFqq “ C∆1pRs˚Fq in H0
Z1pX 1,KX 1{Y {Sq,(2.7.3)

where s˚ : H0
ZpX,K∆q Ñ H0

Z1pX 1,∆1q is the induced push-forward morphism.
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(4) (Cohomological Milnor formula) Assume S “ Speck. If Z “ txu and Y is a smooth curve,
then we have

C∆pFq “ ´dimtotRΦx̄pF , fq in Λ “ H0
xpX,KX{kq,(2.7.4)

where RΦpF , fq is the complex of vanishing cycles and dimtot “ dim ` Sw is the total
dimension.

(5) (Cohomological conductor formula) Assume S “ Speck. If Y is a smooth connected curve
over k and Z “ f´1pyq for a closed point y P |Y |, then we have

f˚C∆pFq “ ´aypRf˚Fq in Λ “ H0
y pY,KY {kq,(2.7.5)

where aypGq “ rankG|η̄´ rankGȳ`SwyG is the Artin conductor of the object G P DctfpY,Λq
at y and η is the generic point of Y .

(6) The formation of non-acyclicity classes is also compatible with specialization maps (cf. [3,
Proposition 4.17]). We call (2.7.1) the fibration formula for characteristic class, which is
motivated from [2].

2.8. Let X be a smooth connected curve over k. Let F P DctfpX,Λq and Z Ď X be a finite set of
closed points such that the cohomology sheaves of F |XzZ are locally constant. By the cohomological
Milnor formula (2.7.4), we have the following (motivic) expression for the Artin conductor of F at
x P Z

axpFq “ dimtotRΦx̄pF , idq “ ´CtxuU{U{kpF |U q,(2.8.1)

where U is any open subscheme of X such that U X Z “ txu. By (2.7.1), we get the following
cohomological Grothendieck-Ogg-Shafarevich formula (cf. [3, Corollary 6.6]):

CX{kpFq “ rankF ¨ c1pΩ
1,_
X{kq ´

ÿ

xPZ

axpFq ¨ rxs in H0pX,KX{kq.(2.8.2)

2.9. Idea of the proof. May assume Y “ A1. Consider

Z ˆ P1 � � τ // X ˆ P1 fˆid //

ft ##

Y ˆ P1,

{{
P1

(2.9.1)

and G “ pr˚1F b L!pftq, where L is the Artin-Schreier sheaf on A1 associated with some character
ψ : Fp Ñ Λ˚. After taking a finite extension PÑ P1, we may assume G P Db

cp∆ˆ Pz8q. Applying
the pull-back and specialization formulas to C∆ˆPz8pGq P H0pZ,KZ{Pq “

À

xPZ Λ, we get

C∆pΨpr2pGqq “ C∆pFq.
Applying the cohomological Milnor formula, we get

C∆pFq “ C∆pΨpr2pGqq “ ´
ÿ

xPZ

dimtotRΦx̄pF , fq ¨ rxs.
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